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Conjugate addition of alkylboron compounds (alkyl-9-BBN)
to aryl ¡,¢-unsaturated ketones proceeded in the presence of
a catalytic amount (10mol%) of [(IPr)CuCl] and t-BuOK. The
alkylboranes are available through alkene hydroboration, and
thus the overall process represents a reductive conjugate addition
of alkenes to enone derivatives. A variety of functional groups
are tolerated in both the alkenes and the ¡,¢-unsaturated
ketones.

Transition-metal (Rh, Pd, Ni, etc.)-catalyzed conjugate
additions of organoboron compounds to ¡,¢-unsaturated car-
bonyl compounds are useful carbon­carbon bond formation
methods because of their broad substrate scope, functional group
compatibility and applicability to asymmetric reactions.1­4

Unfortunately however, the organoboron reagents that are
generally usable for these methods are limited to aryl-,
alkenyl-, and allylboron compounds, and the reactions of
alkylboron derivatives are relatively unexplored.2­7

In this context, we reported recently that conjugate addition
of alkylboron compounds (alkyl-9-BBN) to imidazol-2-yl ¡,¢-
unsaturated ketones proceeded in the presence of a catalytic
amount (10mol%) of a Cu/N-heterocyclic carbene (NHC) and
t-BuOK.8,9 Here we report that the copper-catalyzed conjugate
addition of alkylboranes has been expanded to the reaction with
aryl ¡,¢-unsaturated ketones.10­12 The wide and easy availabil-
ity of alkylboranes via the established alkene hydroboration is an
attractive feature of this transformation and thus the overall
process represents a reductive conjugate addition of alkenes to
enone derivatives. A variety of functional groups are tolerated in
both the alkenes and the ¡,¢-unsaturated ketones.

Specifically, alkylborane 2a in THF solution was prepared
via hydroboration of styrene (1a) with 9-borabicyclo[3.3.1]-
nonane dimer [9-BBN-H]2 (1a/B 1.05:1) at 60 °C (Scheme 1).
Subsequently, the resulting THF solution of 2a (0.3mmol) was
added to a THF solution of [(IPr)CuCl]13 (10mol%) and
t-BuOK (10mol%). Chalcone (3a) (0.2mmol) was then added
to the mixture, which was heated at 80 °C for 8 h. After
hydrolytic workup, the conjugate addition product 4aa was
obtained in 83% isolated yield.14

Several observations concerning the optimum reaction con-
ditions are to be noted (Scheme 1). Unlike the conjugate addi-
tion of alkylboranes to imidazol-2-yl ¡,¢-unsaturated ketones,
IPr ligand was effective for the present protocol. While SIPr was
as effective as IPr (80% yield), other NHC ligands such as IMes
and ICy resulted in no reactions under otherwise identical
conditions.13 The reaction without a ligand afforded a complex
mixture with no addition product. The use of Cu(Ot-Bu)/
IPr instead of [(IPr)CuCl]/t-BuOK was also effective to produce
3aa in 85%, suggesting that KCl present in the optimal
conditions is not essential for the catalysis. No reaction occurred
when [(IPr)CuCl]/t-BuOK was omitted.15 Alkyl ¡,¢-unsaturat-

ed ketones did not afford the corresponding products under
similar reaction conditions: the lower reactivity of the alkyl
ketones would be attributed to their lower electrophilicity.16

Various alkenes 1 and aryl ¡,¢-unsaturated ketones 3
were subjected to the reductive conjugate addition protocol
(Table 1).17 Functional groups such as ester, acetal, silyl ether,
methoxy, trifluoromethyl, phthalimide, bromo, and amido moie-
ties were tolerated in the reaction (Entries 2­11). Both alkyl- and
aryl substituents were compatible at the ¢-position in the
¡,¢-unsaturated ketones. The substrate 3k bearing a 2-thienyl
group at the ¢-position underwent the conjugate addition
(Entry 11). The substitution of the aromatic ring of the aryl
ketone with either MeO or CF3 groups caused only marginal and
capricious effects on the reactivity (Entries 5 and 6). The
2-furyl ketone substrate 3g surved as a substrate (Entry 7).

The tolerance of the reaction toward steric demand in
alkylboranes 2 and ¡,¢-unsaturated ketones 3 is also shown in
Table 1. The sterically more demanding alkylborane 2e, which
was derived from a terminal alkene 1e with a tertiary alkyl
substituent, underwent coupling with 3i to afford the corre-
sponding product 4ei in good yield (Entry 9). The reaction of
the ¢-branched alkylborane 2h, which was prepared from
¡-methylstyrene 1h, also proceeded smoothly to produce 4ha
as a mixture of diastereomers (79:21) (Entry 12). No reaction
occurred with secondary alkylboranes (data not shown). A
sterically more demanding £-alkyl substituent such as an
cyclohexyl group was tolerated (Entry 3).

In summary, the scope of the copper-catalyzed conjugate
addition of alkylboranes (alkyl-9-BBN) has been expanded
toward aryl ¡,¢-unsaturated ketones. The alkylboranes are
easily and widely available through alkene hydroboration and
thus the overall process represents a reductive conjugate addition
of alkenes to enone derivatives. A variety of functional groups

Scheme 1. Cu-catalyzed conjugate addition of alkylborane.
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are tolerated in both the alkenes and the ¡,¢-unsaturated
ketones.
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aThe reaction was carried out with 3 (0.4mmol, E/Z > 99:1),
alkylborane 2 (Entries 1­3, 0.6mmol; Entries 4­12, 0.48
mmol), [(IPr)CuCl] (10mol%) and t-BuOK (10mol%) in
THF (0.8mL) at 80 °C for 8 h. Alkylborane 2 was prepared in
advance from 1. bIsolated yield based on 3. cNMR yield. dThe
isolated product was contaminated with a trace amount of an
unidentified material. eDiastereomer ratio 79:21.
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